UI Feature
Data Management

Import/Export Wizards

Move your vector data in and out of MLGraph with guided wizards supporting all major formats.

Import/Export Wizard Interface

Step-by-step import wizard with format detection and validation

Supported Formats

Parquet
Recommended

  • • Columnar storage with compression
  • • 12x faster than CSV
  • • Type-safe schema
  • • Streaming support

CSV

  • • Universal compatibility
  • • Human readable
  • • Column mapping wizard
  • • Header detection

JSON / JSONL

  • • Flexible schema
  • • Nested metadata support
  • • Line-delimited for streaming
  • • Easy debugging

FVECS / BVECS

  • • FAISS native format
  • • Binary, compact
  • • Fast loading
  • • Benchmark standard

Import Wizard Steps

1

Select Source

Upload file, paste URL, or connect to S3/GCS bucket

2

Format Detection

Auto-detect format and preview first 100 rows

3

Column Mapping

Map columns to vector, ID, and metadata fields

4

Validation

Check dimensions, data types, and duplicate IDs

5

Import

Stream to index with progress tracking

Export Options

Export Configuration

  • Full Export: All vectors with metadata
  • Filtered Export: By ID range, metadata filter, or search results
  • Sampled Export: Random sample for testing
  • Incremental Export: Changes since last export (CDC)

API Usage

// Programmatic import
const importJob = await mlgraph.import({
  index: 'my-vectors',
  source: {
    type: 'url',
    url: 'https://storage.example.com/vectors.parquet'
  },
  mapping: {
    vectorColumn: 'embedding',
    idColumn: 'doc_id',
    metadataColumns: ['title', 'category']
  },
  options: {
    batchSize: 10000,
    onDuplicate: 'skip' // or 'replace', 'error'
  }
});

// Monitor progress
importJob.on('progress', ({ processed, total, rate }) => {
  console.log(`${processed}/${total} (${rate} vec/s)`);
});

await importJob.complete();